Preparation and ¹H-NMR Spectra of Dialkyl{tetrakis(1-pyrazolyl)borato}-thallium(III) Complexes

NOTES

Masayoshi Onishi,* Katsuma Hiraki,* and Shigeki Nakagawa

Department of Industrial Chemistry, Faculty of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki 852

(Received September 17, 1979)

Synopsis. Diethyl- and dibuthyl {tetrakis(1-pyrazolyl)-borato}thallium(III) complexes were prepared and characterized. The ¹H-NMR spectra of pyrazolyl protons of the BPz₄ ligand as well as the coupling constants between thallium and alkyl protons are discussed.

Trofimenko¹⁾ reported several pyrazabole compounds, *i.e. boron* compounds of poly(1-pyrazolyl)borate. Storr et al. prepared sodium poly(1-pyrazolyl)aluminates and -indates,²⁾ and a few transition metal complexes of poly(1-pyrazolyl)gallates(III).^{2,3)} Some pyrazolyl-N,N'-bridged complexes of aluminum, gallium,⁴⁾ and thallium(III)⁵⁾ have also been reported. However, no study seems to have been reported on poly(1-pyrazolyl)borate complexes of IIIB group metals except boron¹⁾ and thallium(I).⁶⁾

This note deals with the preparation and ¹H-NMR study of two new dialkyl{tetrakis(1-pyrazolyl)borato} thallium(III) complexes, $[TlR_2(BPz_4)]$ {Pz=1-pyrazolyl, R=Et (1), and R=n-C₄H₉ (2)}.

R
TI
N=N
S
N=N
S
N=N
S
N=N
S
N=N
S
R
1, R = Et
2, R =
$$n$$
-C₄H₉

Experimental

General Procedure and Materials. Melting points were determined in capillary tubes on a Yanagimoto MP-S3 microstage apparatus and are uncorrected. IR spectra

were recorded on a Hitachi model 285 spectrometer, and ¹H-NMR spectra on a JEOL model JNM-MH-100 spectrometer (100 MHz) using tetramethylsilane as an internal standard. Molecular weight was determined in dichloromethane using a Mechrolab model 301 vapor pressure osmometer. Molar conductivities were measured with a Toa Denpa CM-6A instrument. Solvents were dried and distilled by the standard methods, all the preparative operations being performed in an atmosphere of dry nitrogen.

Sodium tetrakis(1-pyrazolyl)borate, {Na(BPz₄)}⁷⁾ and dialkylthallium(III) bromides⁸⁾ were prepared according to reported procedures.

Reactions of Dialkylthallium(III) Bromides with Na(BPz₄). Sodium tetrakis(1-pyrazolyl)borate (1.66 mmol) was added to a THF solution of diethylthallium(III) bromide (1.46 mmol). After the mixture had been heated under reflux for 4 h, the solvent was evaporated under reduced pressure. The resulting residue was recrystallized from dichloromethane and hexane, affording a white powder of [TlEt₂(BPz₄)] (1). A white powder of [Tl(n-C₄H₉)₂(BPz₄)] (2) was prepared using dibuthylthallium(III) bromide in a similar way to that for 1.

Results and Discussion

Diethyl- and dibutylthallium(III) bromides reacted with Na(BPz₄) in THF under reflux to give 1 and 2, respectively.⁹⁾ Complex 1 is considerably soluble in the usual organic solvents, the yield after recrystallization being fairly low. The molecular weight of 1 determined in dichloromethane was 526, in line with the monomeric structure formulated as [TlEt₂-(BPz₄)] (calcd 542). The non-ionic character of these two complexes was confirmed by low conductivity in common organic solvents (Table 1).

Mass spectra of 1 and 2 showed several peak-groups,

Table 1. Yields and properties of the New Thallium(III) complexes

Com-	Yield ^{a)}	$\frac{\mathrm{Mp}}{^{\circ}\mathrm{C}}$	$\Lambda/(\Omega^{-1}\mathrm{cm^2/mol})^\mathrm{b)}$				Found (Calcd), %		
plex	%		$\mathrm{CH_2Cl_2}$	THF	MeCOMe	EtOH	$\widehat{\mathbf{c}}$	Н	N
1	8.8	194	0.25		0.55	2.7	35.66 (35.48)	4.00(4.09)	21.01(20.69)
2	40	89—90	0.18	0.03	0.26	2.06	40.27 (40.19)	5.03(5.06)	18.87 (18.75)

a) Based on dialkylthallium(III) bromide. b) Molar conductivity in mol m⁻³ solution, at 25 °C.

Table 2. ¹H-NMR data of the thallium(III) complexes^{a)}

Com- plex	Alkyl group								BPz ₄ group ^{b)}		
	δ/ppm	α - $\widetilde{GH_2}$ $J_{\mathrm{HTl}}/\mathrm{Hz}$	$J_{lphaeta}/{ m Hz}$	δ/ppm	$\overline{J_{ ext{HTl}}/ ext{Hz}}$	$\frac{\gamma\text{-CH}_2}{\delta/\text{ppm}}$	$\frac{\delta\text{-CH}_3}{\delta/\text{ppm}}$	3 -H δ/ppm	$\begin{array}{c} \text{4-H} \\ \delta/\text{ppm} \end{array}$	5-H δ/ppm	
1°)	1.41(dq)	306	8.0	1.14(dt)	638		_	6.94(d)	6.28(t)	7.65(d)	
2 ^{d)}	1.49(dt)	338	7.0	$1.70({ m dm})^{ m e}$	538	$1.25(m)^{e,f,g}$	$0.86(t)^{g)}$	6.94(d)	6.28(t)	7.65(d)	

a) TMS as an internal standard. Abbreviations used; d=doublet, dm=double multiplet, dq=double quartet, dt=double triplet, m=multiplet, t=triplet. b) ${}^3J_{3,4}$ and ${}^3J_{4,5}$ are actually 2.0 Hz. c) In CD₂Cl₂. d) In CDCl₃. e) ${}^3J_{\alpha\beta}$ was not distinguished. f) The coupling to thallium was not distinguished. g) ${}^3J_{7\delta} = 7.0$ Hz.

TABLE 3. SOLVENT EFFECT OF THE PYRAZOLYL PROTON RESONANCES OF 2^a)

3-H	4-H	5-H
7.21	6.12	7.48
6.88	6.25	7.59
6.87	6.22	7.68
	7.21 6.88	7.21 6.12 6.88 6.25

a) δ value (ppm) from TMS, at 25 °C. See Table 2, concerning the values in CDCl₃.

the pattern of each being characteristic of the isotopes of thallium (203Tl and 205Tl) and boron (11B and 10B). The highest peak of each peak-group, corresponding to a species containing both 205Tl and 11B was characterized as follows. Complex 1 showed four peaks at m/e 475, 513, 542, and 747 ascribable to the ethylthallium species, [TlEt₂(BPz₃)]+, [TlEt(BPz₄)]+, [TlEt₂- (BPz_4)]+ (the weak parent peak), and $[Tl_2Et_2(BPz_4)]$ +, respectively, and six peaks at m/e 350, 417, 484, 555, 622, and 689 to the dealkylated thallium species, $[Tl(BPz_2)]^+$, $[Tl(BPz_3)]^+$, $[Tl(BPz_4)]^+$, $[Tl_2(BPz_2)]^+$, [Tl₂(BPz₃)]+(weak), and [Tl₂(BPz₄)]+, respectively, the peak at m/e 614 not being ascribable to any species. Complex 2 showed four peaks at m/e 531, 541, 598, and 803 ascribable to the butylthallium species, $[Tl(C_4H_9)_2(BPz_3)]^+$, $[Tl(C_4H_9)(BPz_4)]^+$, $[Tl(C_4H_9)_2^ (BPz_4)$]⁺ (weak parent peak), and $[Tl_2(C_4H_9)_2(BPz_4)]$ +, respectively, in addition to the six peaks ascribed to the dealkylated species and the unknown one at m/e614 shown for complex 1. It seems that the {poly(1pyrazolyl)borato}dithallium fragments are formed in a considerable amount.

The pyrazolyl region in the ¹H-NMR spectrum of both **1** and **2** showed a virtual triplet for four 4-H's and two doublets for four 3-H's and 5-H's (Table 2). This indicates that the four pyrazolyl groups of the BPz₄ ligand are magneto-spectroscopically equivalent and fluxional in solution, similar to the case of [Zn-(BPz₄)₂]¹⁰) and [Pd(1-3- η ^3-C₃H₅)(BPz₄)].¹⁰) On cooling to -31 °C,¹¹) the three signals broadened slightly, no slow-exchange limiting spectrum being obtained even at this temperature. ¹H-NMR data of the pyrazolyl protons of **2** in C₆D₆, CD₂Cl₂, and (CD₃)₂CO are given in Table 3. Two doublets at δ 6.88 and 7.59 in CD₂Cl₂ were attributed to the 3-H's and the

5-H's, respectively, considering the fact that the environment of the outer 3-H's changes more significantly on switching the NMR solvent, than that of the inner 5-H's located near boron atom.

In the ¹H-NMR signals of alkyl groups, couplings to ²⁰³Tl and ²⁰⁵Tl were virtually identical (Table 2). Similar large and actually equal coupling constants of these two thallium isotopes were reported on some alkyl- or arylthallium(III) compounds by Maher and Evans, who found that a positive charge delocalized on the thallium atom increases the magnitude of the J(Tl-H) values, through the enhancement of s character upon the thallium atom. 12) The coupling constants of the α - and β -protons in 1 are actually comparable with the respective values $[{}^2J(\mathrm{H}_{\alpha}\mathrm{Tl})=340~\mathrm{Hz}$ and $^{3}J(H_{\beta}Tl) = 628 \text{ Hz}$] of diethylthallium(III) sulfate, ¹²⁾ this being the case with the dibutylthallium(III) homologues. This suggests that there is nearly one positive charge on the thallium atom in 1 or 2, and the bonds between the thallium atom and the pyrazolyl-nitrogens are a kind of contact ion pair. This is in line with the fluxional behavior of the BPz₄ ligand in 1 and 2 at low temperature.

References

- 1) S. Trofimenko, J. Am. Chem. Soc., 89, 4948 (1967).
- 2) K. R. Breakell, D. J. Patmore, and A. Storr, *J. Chem. Soc.*, *Dalton*, **1975**, 749.
- 3) D. J. Patmore, D. F. Rendle, A. Storr, and J. Trotter, J. Chem. Soc., Dalton, 1975, 718.
- 4) A. Arduini and A. Storr, J. Chem. Soc., Dalton, 1974, 503.
- 5) B. Walther, A Zschunke, B. Adler, A Kolbe, and S. Bauer, Z. Anorg. Allg. Chem., 427, 137 (1976).
- 6) M. I. Bruce, M. Z. Iqbal, and F. G. A. Stene, J. Chem. Soc., (A), 1971, 2820.
 - 7) S. Trofimenko, J. Am. Chem. Soc., 89, 3170 (1967).
- 8) A. McKillop, L. F. Elson, and E. C. Taylor, J. Organomet. Chem., 15, 500 (1968).
- 9) The analytical data of 1 and 2 are satisfactory, as seen in Table 1. Their IR spectra were also consistent with the proposed formulae.
- 10) S. Trofimenko, J. Am. Chem. Soc., 91, 3183 (1969).
- 11) The temperature of the NMR samples was determined with methanol or 1,3-propanediol.
- 12) J. P. Maher and D. F. Evans, J. Chem. Soc., 1965, 637.